"Hatred stirs up conflicts, Love forgives all wrongs." - Proverbs 10:12
The Joy of a Teacher is the Success of his Students.
- Samuel Dominic Chukwuemeka
Good evening. Welcome to our site.
I greet you this day, Fri Jul 04 2025 18:19:41 GMT+0000 (Coordinated Universal Time).
The polygons discussed in this site are regular polygons only.
First: read the notes. Second: view the videos. Third: solve the questions/solved examples.
Fourth: check your solutions with my thoroughly-explained solutions. Fifth: check your answers with the calculators as applicable.
I wrote the codes for the calculators using JavaScript, a client-side scripting language. Please use the latest Internet browsers. The calculators should work.
Only integers and decimals are allowed. Fractions are not allowed.
Comments, ideas, areas of improvement, questions, and constructive criticisms are welcome. You may contact me.
If you are my student, please do not contact me here. Contact me via the school's system.
Thank you for visiting!!!
Samuel Dominic Chukwuemeka (Samdom For Peace) B.Eng., A.A.T, M.Ed., M.S
Equilateral Triangle inscribed in a Circle OR a Circle circumscribed about an Equilateral Triangle
$ h = \dfrac{3r}{2} \\[5ex] b = r\sqrt{3} \\[3ex] a = \dfrac{r}{2} \\[5ex] r = 2a \\[3ex] A_T = \dfrac{bh}{2} \\[5ex] A_C = \pi r^2 \\[3ex] \dfrac{A_T}{A_C} = \dfrac{3\sqrt{3}}{4\pi} \\[5ex] \dfrac{A_C}{A_T} = \dfrac{4\pi \sqrt{3}}{9} \\[5ex] A_r = A_C - A_T \\[3ex] A_{ep} = \dfrac{A_r}{3} $ | $ h = \dfrac{b\sqrt{3}}{2} \\[5ex] b = \dfrac{2h\sqrt{3}}{3} \\[5ex] a = \dfrac{b\sqrt{3}}{6} \\[5ex] r = \dfrac{2h}{3} \\[5ex] A_T = \dfrac{3r^2\sqrt{3}}{4} \\[5ex] $ | $ h = 3a \\[3ex] b = 2a\sqrt{3} \\[3ex] a = \dfrac{h}{3} \\[5ex] r = \dfrac{b\sqrt{3}}{3} \\[5ex] $ |
Circle inscribed in an Equilateral Triangle OR an Equilateral Triangle circumscribed about a Circle
$ h = 3r \\[3ex] b = 2r\sqrt{3} \\[3ex] a = r \\[3ex] r = a \\[3ex] A_T = \dfrac{bh}{2} \\[5ex] A_C = \pi r^2 \\[3ex] \dfrac{A_T}{A_C} = \dfrac{3\sqrt{3}}{\pi} \\[5ex] \dfrac{A_C}{A_T} = \dfrac{\pi \sqrt{3}}{9} \\[5ex] A_r = A_T - A_C \\[3ex] A_{ep} = \dfrac{A_r}{3} $ | $ h = \dfrac{b\sqrt{3}}{2} \\[5ex] b = \dfrac{2h\sqrt{3}}{3} \\[5ex] a = \dfrac{b\sqrt{3}}{6} \\[5ex] r = \dfrac{h}{3} \\[5ex] A_T = 3r^2\sqrt{3} \\[3ex] $ | $ h = 3a \\[3ex] b = 2a\sqrt{3} \\[3ex] a = \dfrac{h}{3} \\[5ex] r = \dfrac{b\sqrt{3}}{6} \\[5ex] $ |
|
|
---|
Square inscribed in a Circle OR
a Circle circumscribed about a Square
The diameter of the circle is equal to the diagonal of the square
$ d = d_S \\[3ex] l = r\sqrt{2} \\[3ex] a = \dfrac{l}{2} \\[5ex] r = \dfrac{l\sqrt{2}}{2} \\[5ex] A_S = l^2 \\[3ex] A_C = \pi r^2 \\[3ex] \dfrac{A_S}{A_C} = \dfrac{2}{\pi} \\[5ex] \dfrac{A_C}{A_S} = \dfrac{\pi}{2} \\[5ex] A_r = A_C - A_S \\[3ex] A_{ep} = \dfrac{A_r}{4} $ | $ l = 2a \\[3ex] a = \dfrac{r\sqrt{2}}{2} \\[5ex] r = a\sqrt{2} \\[3ex] A_S = 2r^2 \\[3ex] $ |
Circle inscribed in a Square OR a Square circumscribed about a Circle